THE GEORGE WASHINGTON UNIVERSITY

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

Determination of Solar Energy Transition Potential of Department of Defense (DoD) Facilities and Non-Tactical Vehicles

Ariel S Castillo

PhD Candidate, Environmental and Energy Management Program

Department of Engineering Management and THEGEORGE Systems Engineering

WASHINGTON

Evolution of Energy/National Security Public Research

- Pentagon, DoD, DHS, CRS and BRAC reports, former CIA Director (Woolsey) articles, Brookings Institute, RAND, etc.
- Industry awaiting major policy before investing

GW Engineering Significance/Benefits of Research

Societal

- 1. Saving military lives
- 2. Protecting critical infrastructure from our adversaries
 - China electronic warfare
- 3. Reducing fossil energy consumption
- 4. Improving environmental quality
- 5. Promoting a new renewable energy industry – growth in new technical discipline (integrates DoD & energy)

Academic

- 1. New area which integrates national security and environmental disciplines
- 2. Baseline data for future academic research is being developed as part of research
 - Little to no public source data exists – mostly classified
- 3. Analysis of data in the development of a decision model – envision an operational implementation plan across DoD bases

GW Engineering Project Overview

- Sponsor: GW Solar Institute
- Research period: 2009 - 2010
- Research phases:
 - 1. Energy and emissions analyses
 - 2. Benefits analyses
 - 3. Model development

Wright Patterson AFB

Facilities

Non-Tactical Vehicles

GW Engineering DoD Energy Consumption Overview

- Largest energy consumer in the government and Nation
- Consumes 78% of total Federal energy usage
- Over 96% of energy consumption from fossil fuels
- 577,500 facilities and 190,000 non-tactical vehicles
- \$3.4 billion in annual facility energy consumption
- \$250 million in annual nontactical vehicle energy consumption

GW Engineering Department of Defense (DoD) Energy Overview

* Non-fleet vehicle consumption is fuel for operational forces.

GW Engineering Research Phases

1. Energy and Emissions Analyses

- 2. Benefits Analyses
- 3. Model Development

GW Engineering Current Research Overview

1. DoD Energy and Emissions Research Analyses

- High level DoD and Services facilities energy and emissions analyses
- High level DoD and Services vehicles energy and emissions analyses

Preliminary Facility DoD Energy Consumption Analysis

GW Engineering Phase 2: Benefits Analyses Overview

- Meeting Federally Mandated Policies
- Improving Mission Readiness
 - CO₂ Emission Reduction Benefits
 - Foreign Oil Reduction Benefits
 - Facility Fossil Energy Reduction Benefits
 - Base Level Mission Need

Meeting Federally Mandated Policies

- Energy Policy Act of 2005 (EPAct 2005)
 - Reduction targets: 2% reduction per year starting in FY06 and ending in FY15
 - Renewable energy goals: (1) not less than 3% from FY07 to FY09, (2) not less than 5% from FY10 to FY12, and (3) not less than 7.5% from FY13 and thereafter
- Executive Order (EO) 13423
 - Reduction targets: 3% annually through FY15
- EO 13514
 - Set a 2020 GHG reduction target within 90 days
 - 30% reduction in vehicle fleet petroleum use by 2020

CO₂ Emissions Reduction Benefits

- National Security and the Threat of Climate Change, 2007, CNA report
 - "climate change trends pose grave implications for national security that will affect the organization, training, equipping, and planning of the military mission"
- Powering America's Defense, 2009, CNA report
 - "destabilization driven by ongoing climate change has the potential to add significantly to the mission burden of the US military in fragile regions of the world"
 - "climate change is about instability. It is a destabilizing activity, with murderous consequences."

Foreign Oil Reduction Benefits

- Reductions in foreign oil expenditures to Sunni fundamentalist Islamic movements and Wahhabis
 - US pays \$3 to \$4 billion to Wahhabism a year
- Saudi donors and charities linked to al Qaeda
 - CIA estimates \$30 million per year for al Qaeda to sustain their capabilities
 - 9/11 attacks are as little as \$400,000 to \$500,000
 - Equitable to roughly 7,500 Americans filling up their SUVs at \$3.00 per gallon of gasoline with 22.5 gallon fuel capacity
 - Decade before 2002, al Qaeda and other jihadist
 organizations raised between \$300 to \$500 million through
 Saudi charities

Facility Fossil Energy Reduction Benefits

- Grid vulnerabilities due to system operator error, weather damage, terrorist, nuclear or EMP attack
- Cyber attacks advancing China starting to map the US electric grid
- More Flight Less Fuel report: distributed energy
 - Self-sustaining DoD bases on solar or renewable energy
 - Allows for distributed energy operations, avoids electric grid vulnerability challenges and provides continuous operational capability at a DoD base

Base Level Mission Need

Generator Run Time and Maintenance

Aurora Generator Cyber Attach Experiment

GW Engineering **Exercise** Phase 3 – Base Level Facilities Study

GW Engineering Phase 3: Model Development

- <u>Problem:</u> Which are the most likely US military bases that warrant consideration for a solar energy implementation?
- Criteria (parameters under consideration):
 - Fossil energy consumption
 - CO₂ emissions
 - % land needed to meet energy requirement
 - Cost
 - Mission readiness

GW Engineering Model Hierarchy Rationale

Selecting DoD Bases to Implement Solar Solutions

GW Engineering Model Rationale – Key Parameters

Base Facility Engineering Model Theoretical Context Diagram (TCD)

- Fossil Energy
 - EPAct 2005 and EO 13423
 - Fossil energy (kWh-yr)
- Environmental
 - EO 13514
 - CO₂ emissions (metric-tons/yr)
- Technical
 - Feasibility to implement solutions
 - Solar potential (kWh-yr)
 - Land availability (% of total)
- Cost (US\$)
 - Budgetary requirements (US\$)
- Mission
 - Manpower (# of personnel)
 - Strategic deterrence and C4ISR (post hoc research)
 - * Blue model parameters.

Calculation Methods – Key Parameters

Table 1. Parameters, Primary Unit of Measure, and Calculation Method Utilized

Parameter	Units of Measure	Calculation Method Utilized
Fossil energy consumption	British thermal units	fossil energy consumption _{base n} = sqft _{base n} ×
	(Btus), Megawatt hours	[BBtu / sqft] _{region}
	per yr (MWh-yr), and	
	kilowatt hours per year	
	(kWh-yr)	
CO ₂ emissions	Pounds (lbs) and metric	lbs CO_2 emission _{base n} = MWh _{base n} × [lbs CO_2 /
	tons per year	MWh] _{state}
Land needed to meet energy	%	See table 2 rationale
requirement		
Costs of implementation	\$	Cost to implement solution = $*$ /W _{solar solution} ×
		(Wh-yr _{base n} \div [energy delivered \times solar rating
		\times 365.25 days]) = $W_{solar solution} \times (Wh-yr_{base n} \div$
		$[~78\% \times 4,800 \text{ Wh/m}^2/\text{day} \times 365.25 \text{ days}])$
Mission critical base	# of military personnel	Independent intelligence gathering of each of
		200 DoD bases (BSR and public documents)

*\$/W_{solar solutions} ~\$3.00/W

- Photovoltaics (PVs): CdTe ~ \$2.50/W, a-Si ~ \$3.50/W, CIGS ~ \$3.20/W, and multi-Si ~ \$2.65/W
- Concentrating solar power (CSP): Through ~ \$3.50/W and tower ~\$3.85/W

Calculation Methods – Key Parameters

Table 2. Rationale for Solar Potential and Land Availability Calculation

Questions	Quantitative Approach Responses	
How much land is available at a base?	BSR acreage or square meters $(m^2_{base n})$	
How much solar radiation is available on a base	energy divided by meters squared per year	
for energy?	$[kWh \div m^2 - yr]_{region}$	
What are current solar cell efficiencies?	measured in percent (%) of total solar radiation	
	convertible to energy – average efficiency of a	
	solar cell = 10%	
What are typical module numbers in a solar	solar cells have 1 to n modules; an average	
panel?	solar cell can have 3 modules per panel which	
	reduces efficiencies $(10\% \div 3)$	
What is my solar energy potential on a DoD	solar potential _{base n} = land available _{base n} × (solar	
base?	radiation \times [efficiency \div modules]) _{region} =	
	$m_{base n}^2 \times (kWh \div m^2 - yr \times [10\% \div 3])_{region}$	
What is the % of land needed to meet my current	% land needed =	
fossil energy consumption at a DoD base?	fossil energy consumption _{base n} ÷	
	solar energy potential _{base n}	

Optimization / Scoring Model – Preliminary Analysis

Optimization / Scoring Model Preliminary Results

Research Factor	Energy	Environment	Technical	Technical	Cost	Mission
Research Subfactor	Fossil Energy	CO2 Emissions	Solar Potential	Land Availability	\$	Strat. Det. & C4ISR
Variable or Constraint	Variable	Variable	Variable	Constraint	Variable	TBD
Why important?	EPAct & EO	EO	Feasibility	Feasibility	Budget/POM	DoD Mission
Totals (200 US bases)	34,171,119,077	28,488,159	4,185,774,722,273	0.82%	\$ 82,228,992,197.31	-
Base Identification Number	Est. Fossil Energy Consumption Regionally Adjusted (kWh-yr)	Est. CO ₂ Emissions Regionally Adjusted (metric tons-yr)	Solar Energy Potential by Base (kWh-yr)	% of Land Needed to Meet Base Energy Requirement via a Solar Solution (assume regional adjustment)	Average Cost to Meet 100% of Energy Requirement via a Solar Solution - assume regional adjustment (US\$)	Mission Readiness - Strategic Deterrance and C4ISR
1	170 0/6 053 31	156 037 04	1 060 317 822 34	16 07%	¢ 433.020.135.52	
2	21,864,907.90	14,192.94	2,140,054,699.66	1.02%	\$ 52,615,465.62	
3 4 5 6 7 8	145,884,016.60 196,210,847.21 244,476,452.41 181,925,153.05 99,436,226.62 115,727,558.54 235,727,558.54	94,696.19 127,364.33 232,861.60 173,282.05 94,712.10 66,406.71	3,702,717,477.38 2,516,687,861.96 4,180,414,413.17 1,773,318,165.28 2,037,819,086.64 7,230,033,226.85	3.94% 7.80% 5.85% 10.26% 4.88% 1.60%	\$ 351,053,637.88 \$ 472,159,550.54 \$ 588,305,353.80 \$ 437,782,618.63 \$ 239,282,204.50 \$ 278,485,480.29 \$ 568,307,200,200	
9	235,784,247.51	135,297.55	94,762,782,517.40	0.25%	\$ 567,388,530.79 \$ 61,368,922,66	
10	20,002,490.07	14,033.03	10,270,757.05	139.54%	φ 01,300,922.00	

Aggregate parameter results across ~200 DoD bases

- Fossil energy consumption = 34 billion kWh-yr
- CO₂ emissions = 28.5 million metric tons-yr
- Solar potential = 4 trillion kWh-yr
 - 0.82% of land to meet 100% of energy requirement
- Cost = \$82 billion to meet 100% of energy requirement

Integration of mission parameter inprogress

- Manpower and # of personnel will be integrated
- Strategic deterrence and C4ISR will be considered post hoc research

Optimization / Ranking Model How will model work?

- Model characteristics are deterministic, static, ٠ and multi-objective
- **Optimization by: scoring and weightings**
 - Decision theory, ordinal ranking and ratio analysis
 - May be possible to categorize base criticality **Optimization / Scoring Model Preliminary Results for Mission Manpower**

% Land Needed (Potential to Meet Energy Requirement from Solar) - γ^2 Distribution Results for Sampled Data

- Quantitative data: energy consumption, CO_2 emissions, % land to meet energy requirement via solar, cost, and mission (manpower)
 - Allows for statistical interpretation
 - Parameter submodels feed overall model

Manpower – χ^2 Distribution Results for Sampled Data

GW Engineering Next Steps

- Apply ordinal scoring and ratio analysis for ranking of each individual parameter across each DoD base
- Apply "what if" weightings to parameters for consideration and to analyze ranking sensitivity
- Package and provide finalized results to subject matter expert (SME) committee for approval
- Defend research proposal, submit publication and defend dissertation

GW Engineering Future Areas of Research – Post Hoc

- Continue model approach to other renewable energy sources (wind, tidal, etc.) systems engineering, holistic approach
- Conduct case studies for base specific solar integration
 - Grid ties, state policies, etc.
 - Document possibilities for implementation standards
 - Nellis AFB
- Study potential to integrate research into tactical/operational mission
 - Production of synthetic fuels at bases or near point of use
- Continue to share and collaborate with DoD and Services
 - Hand over decision model to key stakeholders in government
 - Include actual data from bases in model (i.e., from Defense Utility Energy Reporting System (DUERS) & AEWRS (Army Energy and Water Reporting System)) – may require evaluation of source data since not a centralized DoD repository
 - Excel sheets reported to DoD Installations and Environment from Services

FINIS

GW Engineering Nellis Air Force Base Solar Review

- 14 MW project, cost = \$100M
- Initial cost sharing exercise
- Utility company owns the rights
- Sells back electrical to the base
- Discount on electrical for base
- Continued grid connection
- RECs sold by utilities to make up remaining costs
- No environmental benefit of solar energy for the Air Force
- Cannot use solar to meet renewable energy policy targets
- Solar meets 25% of demand

Parameter 1. Fossil Energy Consumption

- Utilized square footage data in DoD's base structure report (BSR)
- Developed DoD fossil energy consumption per square foot factor from actual DoD data
- Adjusted DoD fossil energy consumption per square foot factor by regional application of Department of Energy (DOE) Commercial Building Energy Consumption (CBEC) factors

Parameter 2. Carbon Dioxide Emissions

- Utilized Environmental Protection Agency (EPA) eGrid factors
- Only utilized fossil energy consumption factors
- Excluded renewable energy to develop appropriate calculations

Parameter 3. Solar Energy Potential

- Base acreage data collected from DoD BSR
- Regional solar radiation data from NREL Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors
- Solar cell efficiencies from GWU Solar Energy Institute and crosscheck with NREL reports (assumed ~ 10%)

Parameter 4. Cost of Implementing

- Considered photovoltaic (PV) and concentrating solar power (CSP) average costs
 - PV average costs \$2.89 per watt in 2010 (GWU Solar Institute)
 - Includes multiple PV technologies
 - CSP average costs \$3.68 in 2010 (NREL report)
 - \$3.68 was a forecast in NREL report
 - Current systems cost from \$5,000 to \$8,000 per kW
 - Expected \$4,290 per kW cost in 2015

GW Engineering Mission Benefits of Research

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON DO

- Islanding
- Energy dependability
- Impact on terrorism
- Climate change
- CO2, AFV and AF

GW Engineering Other National Benefits

- Catalyst and market driver of technologies
- Decreased oil
 imports
- Decreased GHG
 emissions

GV Engineering Facility Energy Consumption Initial Data Analyses for FY07

Department	Covered Facilities Site Delivered (BBtus)	% of DoD
Army	73,778.9	35.97%
Air Force	65,545.1	31.95%
Navy	41,750.3	20.35%
Marine Corps	11,008.6	5.37%
Other agencies	13,037.6	6.36%
Total	205,120.5	100.00%

Nellis AFB, Nevada Solar System

Service Energy Consumption Share

Given Figure 1 Non-Tactical Fleet Vehicles Initial Data Analyses for FY07

* GGE = Gasoline Gallon Equivalent

	Non-tactical Fleet Vehicles	
Department	(GGE)	% of DoD
Army	49,214,231	48.37%
Air Force	22,411,762	22.03%
Navy	15,481,033	15.22%
Marine Corps	9,245,494	9.09%
Corps of Engineers	3,578,184	3.52%
Other Agencies	1,808,892	1.78%
Total	101,739,596	100.00%

China Lake, CA Geothermal System

Service Energy Consumption Share

GW Engineering Cooperating Offices

- Deputy Under Secretary of Defense for Installations and Environment (DUSD/I&E)
- Assistant Secretary of the Air Force for Installations Environment and Logistics (SAF/I&E)
- Deputy Assistant Secretary of the Army for Installations and Housing (DASA/I&H)
- Assistant Secretary of the Navy for Installations and Environment (ASN/I&E)

